Tabuľka 2.4

b) Vypočítame priemerný čas potrebný na vyčerpanie 1 hl objemu nádrže za predpokladu, že pri čerpaní pracujú súčasne dve čerpadlá typu A, tri čerpadlá typu C a štyri čerpadlá typu C.

V tomto prípade došlo pri čerpaní 1 hl nádrže k zvýšeniu počtu jednotlivých druhov čerpadiel, čiže je nutné vážiť čas čerpania počtom čerpadiel, takže využijeme vážený tvar harmonického priemeru podľa vzťahu (2.14):

$$\overline{x}_{h} = \frac{\sum_{i=1}^{k} n_{i}}{\sum_{i=1}^{k} \frac{n_{i}}{x_{i}}} = \frac{9}{\frac{2}{40} + \frac{3}{10} + \frac{4}{5}} = \frac{9}{\frac{46}{40}} = 7,83$$

⇒ Interpretácia

Priemerný čas potrebný na vyčerpanie 1 hl objemu nádrže bude 7,83 sekundy (priemerný čas je kratší vzhľadom na väčší počet výkonnejších čerpadiel).

Príklad 2.4

O priemernej mesačnej mzde a vyplatenom mzdovom fonde v troch rôznych prevádzkach máme údaje v tab. 2.4.

Prevádzky podľa mzdového	fondu a priemernej	mzdy
--------------------------	--------------------	------

Prevádzka	Priemerná mzda (v € na pracovníka)	Mesačný mzdový fond v €
1	550	9 900
2	600	12 000
3	680	10 200
Spolu	×	32 100

Vypočítajme priemernú mesačnú mzdu pracovníka v celom podniku.

🖙 Riešenie

Priemerná mzda jedného pracovníka v prevádzke je pomerné číslo. Priemer z pomerných čísel sa určí ako vážený harmonický priemer, keď poznáme iba nepriame váhy – čitateľa pomerných čísel. Ako váhy v našom prípade použijeme celkový mesačný mzdový fond (podiel mzdového fondu a priemernej mzdy vyjadruje počet pracovníkov). Na základe vzťahu (2.14) získame:

$$\overline{x}_{i} = \frac{\sum_{i=1}^{k} n_{i}}{\sum_{i=1}^{k} \frac{n_{i}}{x_{i}}} = \frac{9900 + 12000 + 10200}{\frac{9900}{550} + \frac{12000}{600} + \frac{10200}{680}} = \frac{32100}{53} = 605,660$$

Bodovým odhadom priemerného počtu získaných bodov na skúške (strednej hodnoty základného súboru μ) je výberový priemer \overline{x} , ktorý vypočítame podľa vzťahu (4.3):

$$\overline{x} = \frac{\sum_{i=1}^{25} x_i}{25} = \frac{1\,605}{25} = 64,2$$

Bodovým odhadom štandardnej odchýlky znaku v základnom súbore (σ) je výberová štandardná odchýlka \tilde{s} , ktorá je odmocninou výberového rozptylu vypočítaného podľa vzťahu (4.4):

$$\tilde{s}^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{25-1} \cdot \sum_{i=1}^{25} (x_{i} - \overline{x})^{2} = \frac{1}{24} \cdot 8560 = 356,6667$$

odkiaľ $\tilde{s} = 18,8856$.

⇒ Interpretácia

Bodovým odhadom priemerného počtu bodov, ktorý študenti Obchodnej fakulty Ekonomickej univerzity v Bratislave získajú na skúške z predmetu štatistika, je 64,2 bodu; bodovým odhadom štandardnej odchýlky sledovaného znaku je 18,8856 bodu.

🔜 Riešenie v Statgraphics Centurion (Statgraphics Plus)

Postupujeme v krokoch:

$Describe \rightarrow Numeric \ Data \rightarrow One-Variable \ Analysis$

Otvorí sa okno One-Variable Analysis, v ktorom do položky Data zadáme názov premennej Body. Z ponuky Tables (Tabular Options) vyberieme Summary Statistics. Po stlačení tlačidla OK dostaneme výstup obsahujúci široké spektrum predvolených opisných charakteristík. Na naše účely potrebujeme len výberový priemer a výberovú štandardnú odchýlku, preto z ponuky Pane Options, ktorú dostaneme po kliknutí pravým tlačidlom myši, zvolíme Average a Standard Deviation. Dostaneme výstup znázornený na obr. 4.1.

Count	25
Average	64,2
Standard deviation	18,8856

Summary Statistics for Body

Obr. 4.1 Bodový odhad strednej hodnoty a štandardnej odchýlky základného súboru (Statgraphics Centurion)

Hodnoty zvolených charakteristík *Average* (výberový priemer) a *Standard deviation* (výberová štandardná odchýlka) sa zhodujú s vypočítanými hodnotami.

Tabuľka 4.3

Hodnoty všetkých veličín, ktoré má obsahovať tabuľka analýzy rozptylu, máme vypočítané, preto ich môžeme zapísať do tab. 4.3.

Analýza rozptylu

Zdroj variability	Súčet štvorcov odchýlok	Počet stupňov voľnosti	Priemer štvorcov odchýlok	Hodnota testovacej štatistiky F
Faktor A (kraj)	<i>SSA</i> = 52,0974	k - 1 = 2	<i>MSA</i> = 26,0487	
Náhoda E	<i>SSE</i> = 261,0810	n - k = 22	<i>MSE</i> = 11,8673	<i>F</i> = 2,1950
Spolu	<i>SST</i> = 313,1784	n - 1 = 24		

Celková variabilitu analyzovanej premennej Y je $SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y})^2$ a je súčtom medziskupinovej a vnútroskupinovej variability, t. j. platí vzťah SST = SSA + SSE.

🔜 Riešenie v Statgraphics Centurion (Statgraphics Plus)

K tabuľke analýzy rozptylu, ktorá je najkomplexnejším výstupom pri posudzovaní vplyvu faktora na analyzovanú premennú, sa môžeme dostať viacerými postupmi. Uvedieme len jeden z nich, ktorý je dostatočne rýchly a efektívny.

Pri tvorbe dátového súboru pred vkladaním hodnôt premennej *Kraj* treba typ premennej z predvoleného *Numeric* zmeniť na *Categorial*.

Ďalej postupujeme v krokoch:

Compare \rightarrow *Analysis of Variance* \rightarrow *One-Way ANOVA*

V dialógovom okne One-Way ANOVA vložíme premennú Cena do položky Dependent Variable a premennú Kraj do položky Factor. Po potvrdení tlačidlom OK vyberieme z ponuky Tables (Tabular Options) ANOVA Table. Dostaneme výstup uvedený na obr. 4.21.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	52,0974	2	26,0487	2,19	0,1352
Within groups	261,081	22	11,8673		
Total (Corr.)	313,178	24			

ANOVA Table for Cena by Kraj

Obr. 4.21 Tabuľka analýzy rozptylu (Statgraphics Centurion)

Tabuľka analýzy rozptylu obsahuje okrem vypočítaných štvorcov odchýlok a testovacej štatistiky aj *p*-hodnotu 0,1352. Pretože je väčšia ako hladina významnosti $\alpha = 0,05$,

🔜 Riešenie v Statgraphics Centurion (Statgraphics Plus)

Systém Statgraphics Centurion nemá v ponuke intervalové odhady koeficienta korelácie.

 j) Pokúsime sa nájsť linearizovateľný regresný model, ktorý vyrovnáva empirické údaje lepšie ako lineárny regresný model. Urobíme odhad parametrov takéhoto modelu.

🔜 Riešenie v Statgraphics Centurion (Statgraphics Plus)

Na výber najvhodnejšieho linearizovateľného modelu nám najlepšie poslúži Statgraphics Centurion (Statgraphics Plus), preto prvú časť úlohy budeme riešiť len v tomto softvéri. Predpokladáme, že máme na displeji výstup z procedúry *Simple Regression* (postupnosť krokov z riešenia úlohy a)). Klikneme na ikonu *Tables (Tabular Options)*. Otvorí sa okno, v ktorom z ponuky vyberieme *Comparison of Alternative Models*. Po označení tlačidla *OK* získame výstup na obr. 5.5 (výstup zo Statgraphics Plus obsahuje len niektoré modely uvedené na obr. 5.5).

Model	Correlation	R-Squared
Logarithmic-Y squared-X	-0,9111	83,01%
Square root-Y squared-X	-0,9086	82,56%
Reciprocal-Y squared-X	0,9021	81,38%
Squared-X	-0,9014	81,26%
Linear	-0,9008	81,14%
Square root-Y	-0,9001	81,01%
Square root-X	-0,8957	80,23%
Exponential	-0,8947	80,04%
Squared-Y square root-X	-0,8925	79,66%
Squared-Y logarithmic-X	-0,8925	79,65%
Double square root	-0,8908	79,35%
Squared-Y	-0,8893	79,09%
Logarithmic-X	-0,8873	78,73%
Squared-Y reciprocal-X	0,8827	77,92%
Logarithmic-Y square root-X	-0,8813	77,67%
Square root-Y logarithmic-X	-0,8781	77,11%

Comparison of Alternative Models

	druh trestného činu	alkoholizmus
1	podvod	ano
2	znasilnenie	ano
3	podvod	nie
4	falsovanie_penazi	nie
5	podpalacstvo	ano
6	podpalacstvo	nie
7	kradez	ano
8	kradez	nie

Obr. 5.12 Príprava dátového súboru Kriminalita (základom je netriedený súbor)

Výstupné okno *Contingency Tables* je rozdelené na opisnú časť (*Tables*) a grafickú časť (*Graphs*). V časti *Tables* sú základné informácie o názvoch premenných, počte pozorovaní, počte riadkov a stĺpcov (*Contingency Tables*) a výsledok chí-kvadrát testu nezávislosti (*Tests of Independence*). Pri editovaní nastavení používame aktívne ikony nad oknom. Cez ikonu *Tables* aktivujeme *Frequency Table* a *Tests of Independence*. V časti *Frequency Table* editujeme cez doplnkové menu (pomocou pravého tlačidla myši) výpočet relatívnych početností 2. stupňa (*Table Percentages*), riadkových relatívnych početností (*Row Percentages*) a očakávaných početností (*Expected Frequencies*). Jedným z výstupov je tabuľka skutočných a očakávaných početností (obr. 5.13). V tabuľke *Tests of Independence* je v stĺpci *Statistics* hodnota testovacej charakteristiky a v stĺpci *P-Value* je *p*-hodnota testu. Rozdiel v porovnaní s výsledkami z programu *SAS Enterprise Guide* súvisí so zaokrúhľovaním hodnôt.

Poznámka

Pri voľbe procedúry Crosstabulation je postup rovnaký.

	ano	nie	Row Total
falsovanie_penazi	18	14	32
	1,26%	0,98%	2,24%
	16,90	15,10	
	0,07	0,08	
kradeze	379	300	679
	26,58%	21,04%	47,62%
	358,55	320,45	
	1,17	1,31	

Frequency Table

kujúcej konštanty v modeli s centrovanou časovou premennou). Priemerný ročný pokles priemerného stavu zásob v sledovanom období bol vo výške 2 738,10 eura.

III. Určením časovej premennej tak, že sa súčet jej hodnôt rovnal 0, sa sústava normálnych rovníc (6.31) zjednodušila, ale časová premenná T' s posunutím $t' = t - \overline{t}$ v prípade párneho počtu hodnôt časového radu nadobudla desatinné hodnoty t' = -3,5; -2,5; ... 2,5; 3,5. Aby sme výpočet zjednodušili a počítali s celočíselnými hodnotami časovej premennej, ktorej súčet hodnôt ostane nulový, modifikujeme ju tak, že jej hodnoty zdvojnásobíme. Potom hodnoty časovej premennej každý rok vzrastú o dve jednotky. Nárast modifikovanej časovej premennej T^* o jednotku bude za pol roka. Hodnoty modifikovanej časovej premennej T^* sú uvedené v tab. 6.4. Postupujeme analogicky ako v II. spôsobe odhadu lineárneho trendu. Po dosadení čiastkových výpočtov z tab. 6.4 dostaneme (6.32):

$$b_{1} = \frac{\sum_{t^{*}=-7}^{7} t^{*} y_{t^{*}}}{\sum_{t^{*}=-7}^{7} t^{*^{2}}} = \frac{-230}{168} = -1,369$$
$$b_{0} = \overline{y} = \frac{\sum_{t^{*}=-7}^{7} y_{t^{*}}}{n} = \frac{226}{8} = 28,250$$

Odhadom regresného modelu lineárneho trendu $y_{t^*} = \beta_0 + \beta_1 \cdot t^* + \varepsilon_t$. časového radu priemerných ročných zásob podniku je vyrovnávajúca regresná priamka:

 $\hat{Tr}_{t^*} = \hat{y}_{t^*} = 28,250 - 1,369 \cdot t^*$, pre $t^* = -7, -5, \dots, 5, 7$

⇒ Interpretácia

Rovnako ako v II. spôsobe odhadu lineárneho trendu vývoja priemerných ročných zásob s centrovanou časovou premennou je ich priemerná úroveň v období rokov 2009 až 2016 odhadnutá vo výške 28 250 eur.

Naša modifikovaná časová premenná T* sa o jednotku zmení za pol roka. V období rokov 2009 až 2016 polročne klesali priemerné ročné zásoby v priemere o 1 369 eur. Ročná zmena je potom dvojnásobkom a priemerný ročný pokles priemerného stavu zásob v sledovanom období bol (rovnako ako v I. a II. spôsobe odhadu lineárneho trendu) vo výške 2 738 eur.

Teoretické hodnoty podľa jednotlivých odhadnutých modelov lineárneho trendu získame dosadením hodnôt príslušnej časovej premennej do odhadnutého trendu. Prvú teoretickú hodnotu vypočítame dosadením:

 $t = 1 \text{ do modelu } \hat{y}_t = b_0 + b_1 \cdot t = 40,571 - 2,738 \cdot t = 40,571 - 2,738 \cdot 1 = 37,833$ alebo t' = -3,5 do modelu $\hat{y}_{t'} = 28,250 - 2,738 \cdot t' = 28,250 - 2,738 \cdot -3,5 = 37,833$ alebo $t^* = -7$ do modelu $\hat{y}_{t^*} = 28,250 - 1,369 \cdot t^* = 28,250 - 1,369 \cdot -7 = 37,833$ f) Graficky zobrazíme skutočné a sezónne zaťažené hodnoty vyrovnané regresným modelom v štvrťrokoch rokov 2014 až 2017 spolu so sezónne korigovanými prognózami na štvrťroky roku 2018.

Úlohu budeme riešiť v štatistickom programovom balíku Statgraphics.

🔜 Riešenie v Statgraphics Centurion (Statgraphics Plus)

Pokračujme v riešení z predchádzajúcej úlohy h) a pri nastavení na model A: lineárny. V prvom okne grafického výstupu *Forecasting* na zobrazenom grafe upravme stupnicu na osi *x* od Q1.14 do Q1.19 s krokom 4 sezón. Grafický výstup je rovnaký ako na obr. 6.21.

Obr. 6.21 Graf pôvodného časového radu a časového radu sezónne upravených odhadov pomocou regresného modelu lineárneho trendu časového radu *Objemu predaja posypu* v rokoch 2014 až 2017 spolu s ich sezónne zaťaženými prognózami na štvrťroky roku 2018 (Statgraphics Centurion)

⇒ Interpretácia

Kompozícia dvoch grafov, bodového pôvodných hodnôt časového radu premennej Objem predaja posypu a spojnicového grafu sezónne upravených interpolácií (odhadov) podľa regresného modelu lineárneho trendu je doplnená hranicami 95 % intervalov spoľahlivosti pre sezónne zaťažené prognózy na štyri štvrťroky roku 2018. Z grafu možno vidieť pravidelný pokles v prvých dvoch štvrťrokoch a nárast v druhých dvoch štvrťrokoch každého roka. Sezónne výkyvy narastajú spolu s rastúcim trendom a multiplikatívny dekompozičný model so sezónnosťou nielen vhodne modeluje vývoj objemu predaja v rokoch 2014 až 2017, ale aj umožňuje kvalitnú prognózu so sezónnym zaťažením extrapolovaných hodnôt podľa lineárne rastúceho trendu. V našom krátkodobom časovom rade sa dostatočne neprejavila cyklická zložka (kvadratické alebo exponenciálne zakrivenie) a nebolo potrebné ju do dekompozičného modelu zakomponovať.

- a) Zaujíma nás, ako sa zmenila hodnota "spotrebného koša" fiktívneho spotrebiteľa medzi rokmi 2012 a 2013.
- b) Chceme zistiť, či zmenu hodnoty koša medzi rokmi 2012 a 2013 ovplyvnila viac zmena množstva nakúpeného tovaru alebo zmena cien jednotlivých druhov potravín.
- c) Vypočítame hodnotu Laspeyresov cenového indexu, ak budeme mať k dispozícii len údaje o priemerných mesačných cenách a spotrebe v roku 2012 a index cien (základom je rok 2012).

Data	MI	20	12	Index cien <i>i</i> _p	
Druh potraviny	MJ	Spotreba	Cena	2013/2012	
Mäso hovädzie	kg	3,6	7,78	0,961	
Mlieko konzumné kravské	kg	53,7	0,74	1,054	
Konzumné vajcia	ks	218	0,18	0,956	
Maslo	125 g	25,6	0,97	1,052	
Cukor	kg	29,5	1,09	1,046	
Pšeničná múka	kg	73,4	0,49	1,000	
Ryža lúpaná	kg	5,1	1,47	0,986	
Chlieb	kg	38,1	1,31	1,008	
Zemiaky	kg	48	0,43	1,605	

₿ Riešenie v Exceli

Všetky úlohy budeme riešiť v Exceli. Na vyriešenie úlohy a) použijeme hodnotový súhrnný index, ktorý je určený vzťahom 7.42 takto:

$$I_{Q} = \frac{\sum_{j=1}^{m} Q_{1j}}{\sum_{j=1}^{m} Q_{0j}} = \frac{\sum_{j=1}^{m} p_{1j} \cdot q_{1j}}{\sum_{j=1}^{m} p_{0j} \cdot q_{0j}} = \frac{\sum p_{1} \cdot q_{1}}{\sum p_{0} \cdot q_{0}} = \frac{\sum Q_{1}}{\sum Q_{0}}$$

V úlohe b) vypočítame Laspeyresov a Paascheho cenový index (vzťahy (7.44) a (7.46)):

$${}_{L}I_{p} = I_{p(0)} = \frac{\sum_{j=1}^{m} p_{1j} \cdot q_{0j}}{\sum_{j=1}^{m} p_{0j} \cdot q_{0j}} = \frac{\sum p_{1} \cdot q_{0}}{\sum p_{0} \cdot q_{0}} {}_{p}I_{p} = I_{p(1)} = \frac{\sum_{j=1}^{m} p_{1j} \cdot q_{1j}}{\sum_{j=1}^{m} p_{0j} \cdot q_{1j}} = \frac{\sum p_{1} \cdot q_{1}}{\sum p_{0} \cdot q_{1}}$$

a Laspeyresov a Paascheho index fyzického objemu (vzťahy (7.54) a (7.56)):

$${}_{L}I_{q} = I_{q(0)} = \frac{\sum_{j=1}^{m} p_{0j} \cdot q_{1j}}{\sum_{j=1}^{m} p_{0j} \cdot q_{0j}} = \frac{\sum p_{0} \cdot q_{1}}{\sum p_{0} \cdot q_{0}} {}_{P}I_{q} = I_{q(1)} = \frac{\sum_{j=1}^{m} p_{1j} \cdot q_{1j}}{\sum_{j=1}^{m} p_{1j} \cdot q_{0j}} = \frac{\sum p_{1} \cdot q_{1}}{\sum p_{1} \cdot q_{0}}$$

b) Na hladine významnosti 0,05 overíme, či priemerná cena prenájmov dvojizbových bytov je v obidvoch realitných kanceláriách rovnaká. Využijeme pritom informáciu z úlohy a) o hodnotách štandardných odchýlok.

Analytický softvér SAS Enterprise Guide predpokladá, že analytik pracuje s výberovým súborom, a preto vo všetkých štatistických procedúrach sú parametre základného súboru odhadované z výberového súboru. Z uvedeného dôvodu v SAS Enterprise Guide nie je možné zadávať hodnoty parametrov základného súboru.

c) Na hladine významnosti 0,05 overíme, či rozptyly cien prenájmov dvojizbových bytov v obidvoch realitných kanceláriách môžeme považovať za rovnaké.

Postupujeme v krokoch:

$$Tasks \rightarrow ANOVA \rightarrow t \ Test$$

Otvorí sa okno, v ktorom vyberieme *Two Sample*. V záložke *Data* do položky *Analysis variables* zadáme analyzovanú premennú (premenná, ktorá obsahuje ceny prenájmov za obidve realitné kancelárie) a do položky *Classification variable* zadáme alternatívnu premennú, ktorej hodnoty určujú príslušnosť k realitnej kancelárii. Po stlačení tlačidla *Run* dostaneme výstup na obr. 8.4.18.

F	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
1		455.0	402.9	507.1	81.9645	58.0633	139.2
2		506.3	465.2	547.3	77.0173	56.8931	119.2
Diff (1-2)	Pooled	-51.2500	-113.4	10.8788	79.1481	62.3304	108.5
Diff (1-2)	Satterthwaite	-51.2500	-114.4	11.8557			

Method	Variances	DF	t Value	$\Pr > t $
Pooled	Equal	26	-1.70	0.1019
Satterthwaite	Unequal	22.997	-1.68	0.1065

Equality of Variances					
Method Num DF Den DF F Value Pr > F					
Folded F	11	15	1.13	0.8047	

Obr. 8.4.18 Induktívne úsudky o stredných hodnotách a rozptyloch dvoch základných súborov

Výsledok testovania je uvedený v poslednom riadku tretej tabuľky. Okrem zodpovedajúcich počtov stupňov voľnosti 11 a 15 je tam vyčíslená hodnota testovacej štatistiky 1,13 a *p*-hodnota testu, ktorá potvrdzuje jednoznačnosť rozhodnutia prijať nulovú hypotézu.

V	$\chi^2_{0,005}$	$\chi^2_{0,01}$	$\chi^2_{0,025}$	$\chi^2_{0,05}$	$\chi^2_{0,10}$	$\chi^2_{0,90}$	$\chi^2_{0,95}$	$\chi^{2}_{0,975}$	$\chi^2_{0,99}$	$\chi^{2}_{0,995}$
1	0,0000	0,0002	0,001	0,004	0,016	2,706	3,842	5,024	6,635	7,879
2	0,010	0,020	0,051	0,103	0,211	4,605	5,992	7,378	9,210	10,597
3	0,072	0,115	0,216	0,352	0,584	6,251	7,815	9,348	11,345	12,838
4	0,207	0,297	0,484	0,711	1,064	7,779	9,488	11,143	13,277	14,860
5	0,412	0,554	0,831	1,146	1,610	9,236	11,071	12,833	15,086	16,750
6	0,676	0,872	1,237	1,635	2,204	10,645	12,592	14,449	16,812	18,548
7	0,989	1,239	1,690	2,167	2,833	12,017	14,067	16,013	18,475	20,278
8	1,344	1,647	2,180	2,733	3,490	13,362	15,507	17,535	20,090	21,955
9	1,735	2,088	2,700	3,325	4,168	14,684	16,919	19,023	21,666	23,589
10	2,156	2,558	3,247	3,940	4,865	15,987	18,307	20,483	23,209	25,188
11	2,603	3,054	3,816	4,575	5,578	17,275	19,675	21,920	24,725	26,757
12	3,074	3,571	4,404	5,226	6,304	18,549	21,026	23,337	26,217	28,300
13	3,565	4,107	5,009	5,892	7,042	19,812	22,362	24,736	27,688	29,820
14	4,075	4,660	5,629	6,571	7,790	21,064	23,685	26,119	29,141	31,319
15	4,601	5,229	6,262	7,261	8,547	22,307	24,996	27,488	30,578	32,801
16	5,142	5,812	6,908	7,962	9,312	23,542	26,296	28,845	32,000	34,267
17	5,697	6,408	7,564	8,672	10,085	24,769	27,587	30,191	33,409	35,719
18	6,265	7,015	8,231	9,391	10,865	25,989	28,869	31,526	34,805	37,157
19	6,844	7,633	8,907	10,117	11,651	27,204	30,144	32,852	36,191	38,582
20	7,434	8,260	9,591	10,851	12,443	28,412	31,410	34,170	37,566	39,997
21	8,034	8,897	10,283	11,591	13,240	29,615	32,671	35,479	38,932	41,401
22	8,643	9,543	10,982	12,338	14,042	30,813	33,924	36,781	40,289	42,796
23	9,260	10,196	11,689	13,091	14,848	32,007	35,173	38,076	41,638	44,181
24	9,886	10,856	12,401	13,848	15,659	33,196	36,415	39,364	42,980	45,559
25	10,520	11,524	13,120	14,611	16,473	34,382	37,653	40,647	44,314	46,928
26	11,160	12,198	13,844	15,379	17,292	35,563	38,885	41,923	45,642	48,290
27	11,808	12,879	14,573	16,151	18,114	36,741	40,113	43,195	46,963	49,645
28	12,461	13,565	15,308	16,928	18,939	37,916	41,337	44,461	48,278	50,993
29	13,121	14,257	16,047	17,708	19,768	39,088	42,557	45,722	49,588	52,336
30	13,787	14,954	16,791	18,493	20,599	40,256	43,773	46,979	50,892	53,672
31	14,458	15,656	17,539	19,281	21,434	41,422	44,985	48,232	52,191	55,003
32	15,134	16,362	18,291	20,072	22,271	42,585	46,194	49,480	53,486	56,328
33	15,815	17,074	19,047	20,867	23,110	43,745	47,400	50,725	54,776	57,648
34	16,501	17,789	19,806	21,664	23,952	44,903	48,602	51,966	56,061	58,964
35	17,192	18,509	20,569	22,465	24,797	46,059	49,802	53,203	57,342	60,275
36	17,887	19,233	21,336	23,269	25,643	47,212	50,999	54,437	58,619	61,581
37	18,586	19,960	22,106	24,075	26,492	48,363	52,192	55,668	59,893	62,883
38	19,289	20,691	22,879	24,884	27,343	49,513	53,384	56,896	61,162	64,181
39	19,996	21,426	23,654	25,695	28,196	50,660	54,572	58,120	62,428	65,476
40	20,707	22,164	24,433	26,509	29,051	51,805	55,759	59,342	63,691	66,766

Kvantily χ_p^2 chí-kvadrát rozdelenia so stupňami voľnosti $v : F_v(\chi_p^2) = p$ Príloha 2